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This paper reports a fundamental study of the fluid dynamics inside a triangular 
(attic-shaped) enclosure with cold upper wall and warm horizontal bottom wall. The 
study was undertaken in three distinct parts. I n  the first part, the flow and 
temperature fields in the cavity are determined theoretically on the basis of an 
asymptotic analysis valid for shallow spaces (H/L+O, where H and L are the attic 
height and length). It is shown that in the H/L+O limit the circulation consists of 
a single elongated cell driven by the cold upper wall. The net heat transfer in this 
limit is dominated by pure conduction. In  the second part of the study, the transient 
behaviour of the attic fluid is examined, based on a scaling analysis. The transient 
phenomenon begins with the sudden cooling of the upper sloped wall. It is shown that 
both walls develop thermal and viscous layers whose thicknesses increase towards 
steady-state values. The criterion for the existence of distinct thermal layers in the 
steady state is ( H / L ) t  RaL > 1 ,  where Ra, is the Rayleigh number based on attic 
height. The corresponding criterion for distinct viscous wall jets is 
( H / L ) i  Rub Pr-4 > 1, where Pr is the Prandtl number. The third phase of this study 
focused on a complete sequence of transient numerical simulations covering the 
ranges H / L  = 0.2, 0.4, 1 ;  Ra,/Pr = 10, lo3, lo5; Pr = 0.72, 6. The numerical 
experiments verify the flow features described theoretically in the first two parts of 
the study. The effect of thermal convection on the net heat transfer between the 
bottom and top walls is illustrated numerically. Finally, the transient numerical 
experiments show that in the present parametric domain the single-cell circulation 
pattern is stable with respect to the BBnard instability expected in fluid layers heated 
from below. 

1. Introduction 
The objective of this article is to document the phenomenon of thermal convection 

through an attic or a wedge-shaped space, filled with a Newtonian fluid. The ‘attic’ 
geometry is a generic description for all trapezoidal enclosures whose upper and lower 
surfaces are not parallel. 

The phenomenon of natural convection in spaces with perfectly parallel horizontal 
surfaces has received considerable attention because of its fundamental importance 
in geophysical fluid mechanics, solar-engineering applications, buildings and thermal- 
insulation systems (see e.g. Ostrach 1972; Catton 1979). The attic or wedge geometry 
is of equal importance in all these applications, yet the fluid mechanics of this 
geometry remains to be investigated. Two recent papers by Flack, Konopnicki & 
Rooke (1979) and Flack (1980) discuss for the first time the steady-state natural 
circulation in triangular enclosures filled with air, in the range 7.5 x lo4 < RaH < lo6. 
The results reported in these papers are all experimental and, as pointed out by 

9 BLM 131 



252 D. Poulikakos and A .  Bejan 

Flack et al. (1979), analytical or numerical studies on the same subject are not 
available. Most recently, Bejan & Poulikakos (1982) studied analytically the natural 
convection in a wedge-shaped porous layer cooled from above, and showed that the 
flow pattern can differ fundamentally from the B h a r d  circulation encountered in 
constant-thickness horizontal layers. It is important to establish whether the same 
fundamental departure from the BBnard flow occurs in an attic-shaped enclosure filled 
only with Newtonian fluid. 

I n  the context of an attic, we can identify two basic sets of temperature boundary 
conditions: ( a )  daytime (warm top and cold bottom), when the fluid in the enclosure 
is stably stratified in the steady state; and ( b )  night-time (cold top and warm bottom), 
when the steady circulation of fluid is possible. The present study focuses on 
'night-time ' temperature conditions and seeks to establish the damaging effect posed 
by the fluid circulation on the thermal-insulation potential of the fluid layer which 
fills the cavity. 

2. Mathematical formulation 
Consider the two-dimensional cavity shown schematically in figure 1. The two 

surfaces that are active, i.e. those surfaces that fuel the circulation of fluid in the 
cavity, are a t  different temperatures (T, < TH) and form an angle 6'. The heightllength 
aspect ratio of the enclosure is A = H / L .  In  order to model the operation during 
nighttime conditions, the warm surface (TH) is chosen as horizontal. It is worth 
noting, however, that  if the angle 6' is small the conclusions of this study apply just 
as well to the case where the cold surface is horizontal and the warm surface is of 
slope -8; this alternative geometry may be regarded as a simple two-dimensional 
model for the near-shore thermal circulation in a shallow lake with sloping bottom. 

The equations governing the conservation of mass, momentum and energy a t  every 
point in the enclosure are 

au av -+- = 0, 
ax* aY*  

with the following boundary conditions: 

u* = v* = 0 

T* = T,, TH 

on all solid boundaries, 

on the top and bottom walls respectively, 

u*=o,  - aT* = 0 in the plane of symmetry (x* = L) .  ( 5 )  
ax* 

I n  these equations, u*, u* are the horizontal and vertical velocity components, x*, y* 
the coordinates of each point, and P*, T* the fluid pressure and temperature. 
Properties u ,  po, p and a represent the kinematic viscosity, fluid density, coefficient 
of thermal expansion and thermal diffusivity respectively. All properties are referred 
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, L1 
FIGURE 1 .  Schematic of a shallow attic space filled with Newtonian fluid 

to a characteristic reference temperature of the fluid, To. For moderate temperature 
differences as encountered in real attics, solar collectors and shallow reservoirs, the 
Boussinesq approximation is appropriate : 

P = Poll  -P(T- %)I. (6) 

Combining this statement with (2) and (3) and eliminating the pressure P, leads to  
a single momentum-conservation statement, 

It is known that whenever a rectangular enclosure is heated from below the fluid 
in it may develop thermal instabilities of the BBnard type (BBnard 1901 ; Rayleigh 
1916; Chandrasekhar 1961). However, in the case of an attic space in winter 
conditions the inclination of the roof will tend to  generate a single (primary) cell, 
which will sweep the entire length of the roof, much in the manner of the elongated 
counterflow in a shallow horizontal fluid layer heated in the end-to-end direction 
(Cormack, Leal & Imberger 1974). I n  view of these two possibilities, the BBnard flow 
and the one-cell counterflow, it is not a priori clear which type of flow will exist in 
the cavity. To shed light on this question, we first rely on an asymptotic theory of 
the type available for porous layers (Bejan & Poulikakos 1982), to determine the flow 
in very shallow attic spaces. 

3. Asymptotic theory for the steady state 
I n  the limit A = H / L + O ,  the steady-state part of the problem formulated in $2 

lends itself to  an asymptotic solution of the type developed by Cormack et al. (1974) 
for shallow fluid layers, and by Walker & Homsy (1978) for shallow porous layers. 
We note that O(x,) = L and O(y,) = H ,  hence, from (7),  O(u,) = gPH3AT/vL, where 
A T  = T,-T,. Based on this scaling, the governing equations are written in 
dimensionless form as 

_________ a y a 2 1 y  aww) -A2- a ( a l p a 2 l r  _____- a y a 2 y ) l  ~ 

ay axay ax ay2 ax ax axay ay ax2 

9-2 
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with the following notation : 
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(10) 
In (8) and (9) Pr and GrH are the Prandtl number v/a and the Grashof number 

Noting that the small parameter A = H / L  appears as A2 in ( 8 )  and (9), we seek 
series solutions of the type 

(12) 
Y(x(x, Y) = Ydx, y) + A 2 Y 2 ( ~ ,  y) + A4Y4(x, y) + . .., 
T(x,  y) = T A X ,  y) + A2%(x, y) + A4T4(x, y) + *.  . 

that satisfy the boundary conditions 

Here f ( x )  is a smooth function of x which describes the shape of the upper wall of 
the attic space. If, as in figure 1, the upper wall is flat then the roof-shape function 
has the simple form f(x) = x. It is shown later in this section that the roof shape 
influences the circulation pattern in the enclosure. 

The successive terms in the series solution (12) are derived systematically by 
combining (12) with (8), (9) and (13). For brevity, and since the analytical procedure 
is described in detail in Cormack et al. (1974), Walker & Homsy (1978) and Bejan 
& Poulikakos (1982), we list the final expressions obtained for the O(Ao) and O(A2) 

Y terms : 
T , = l - -  

f '  

T, = C1y' + C2y5+ c3 y4 + C&+ c5y, 

$z = a, y" + a2y9 + a,  ys + a4y7 + a5ys + a,y5 +a, y4 + a,y3 + agy2 .  

(16) 

(17) 
The analytical expressions for coefficiency Ci and ai are given as (A 1 )  and (A 2) in 
the appendix. 

The analytic result presented in (14)-( 17)  is of considerable generality. Once the 
upper wall shape function is defined, (14)-(17) provide a two-term approximate 
solution for the steady-state temperature and flow fields in the enclosure. To 
illustrate, we choose the simple case of the shallow triangular shape shown in figure 
l , f (x)  = x. In this case, (14) and (15) reduce to 

Y To = 1-- ,  
X 
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FIGURE 2. (a) Streamlines and isotherms corresponding to the zeroth-order asymptotic solution. 
(b )  Second-order stream-function and temperature profiles at z* = $L; the fluid is air (Pr = 0.72). 

The resulting expressions for the numerical coefficients of T, and @2 in (16) and (1 7) 
are listed as (A 3) and (A 4) in the appendix. 

Figure 2 ( a )  shows the patterns of streamlines and isotherms corresponding to the 
O(Ao) solution. The slight tilt in the isotherms gives rise to a steady counterclockwise 
motion with a gyration timescale of order Llu, x L2/vGTH. The O(A2) terms of this 
limiting solution are plotted in figure 2 ( b )  as stream-function and temperature profiles 
at  2 = 0.5. It is worth noting that the O(A2) correction (@2, T,) is not proportional 
to the Grashof number GrH, unlike the O(A2) correction for the parallel core flow of 
shallow rectangular cavities (Cormack et al. 1974). 

Regarding the streamline pattern of figure 2(a) ,  it is important to keep in mind 
that this pattern exists only in the limit A+O, and that for the sake of clarity only, 
the figure 2 (a) shows an exaggerated angle. Not visible on figure 2 (a)  is the end-turn 
region (near z = i ) ,  which is infinitely short (of order A ) .  The right end region serves 
to turn the flow by 180°, and assuming that the x* = L plane is adiabatic has no effect 
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FIGURE 3. Zeroth-order flow pattern under a smooth roof, f(z) = sin$%. 

on either the intensity of the counterclockwise cell or the enthalpy carried by it. 
Equations (18) and (19) describe the flow and temperature only in the wedge region, 
where the assumed scaling applies; the same equations do not apply near x* = L, 
where both y* and x* are of order H .  

The pattern in a symmetric (A-shaped) attic space consists of piecing together, 
end-to-end, two asymptotically shallow patterns of the type shown in figure 2 (a). 
Thus a symmetric attic will contain two identical cells, the left counterclockwise and 
the right clockwise, which merge in the middle to form a localized (narrow) updraft 
right under the peak of the roof. If the roof changes slope from A to  - A  smoothly 
(not abruptly as in an  A-frame space) then the updraft will no longer be localized; 
instead, i t  will be distributed over a middle region which scales with L.  To illustrate 
this, consider the circulation under a smooth symmetric roof described by 
f(x) = sininx. The corresponding limiting forms of T and ~ are 

To=l------ Y 
sin inx ’ 

1 
Y - -ncos~nx 

- 40 

Figure 3 shows the cellular flow pattern and the fact that  the left end-turn region 
now occupies approximately one-third of the attic length. 

Regarding the heat transfer between the two walls, the isotherms of figure 2(a) 
indicate that in the limit HIL-tO conduction is the prevailing mechanism. There is, 
however, an incipient convective effort which can be calculated from the heat flux 
along either surface. The Nusselt number is defined as 

net heat transfer 
kLATIH 

NU = 

dx 17A2GrHPr +.... (22) 
A2 

= (l+s+...)s,,-+ X 50 400 

The first term on the right-hand side is the contribution due to pure conduction 
between floor and ceiling : this term blows up if the two surfaces (TH, T,) indeed make 
direct contact at the tip (x = 0) (Arpaci 1966). I n  reality, the wall region of length 
6 near the tip of a shallow wedge (figure 1) will always reach an  average temperature 
between TH and T,, hence the corner region will not contribute appreciably to the 
heat transfer across the attic space. The result (22) proves that, relative to  pure 
conduction, the first convective contribution to the heat-transfer rate scales as the 
group A2GrHPr, unlike in the case of shallow constant-thickness layers heated in the 
horizontal direction, where i t  scales as the group A2Gr& Pr2 (Cormack et al. 1974). 
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I m 
(b ) 

FIGURE 4. (a )  Schematic of the boundary layers developing along the top and bottom walls. ( b )  
Schematic of the grid used for the numerical solution. 

4. Scale analysis of the transient regime 
We gain further insight into the fluid dynamics of the attic space by focusing on 

its transient response to sudden changes in temperature along the two walls. The 
transient behaviour ofan attic space is relevant in itself, considering that many real-life 
systems are designed to function under time-varying conditions (witness in this regard 
the daily cycle imposed on attics and fluid-filled cavities in solar collectors). However, 
a theoretical understanding of the transient behaviour of the enclosure is most 
valuable in a fundamental sense: as shown by Patterson & Imberger (1980) the proper 
identification of the timescales of various flow features that develop inside the cavity 
makes it possible to predict theoretically the basic flow features that will survive in 
the steady state. 

I n  what follows we rely on pure scaling arguments to describe the main features 
of the flow in an isothermal attic fluid subjected to sudden cooling along its tilted 
wall, while the horizontal wall is kept at the initial temperature (figure 4 a ) .  

4.1. The growth of a boundary layer along the top wall 

Consider the triangular enclosure shown in figure 4 ( a ) ,  where the coordinate system 
(x,, y,) is attached to the top wall. What triggers the transient natural convection 
phenomenon is the temperature difference A T  instantly applied across the attic space 
by suddenly cooling the roof. The energy equation ( 4 )  indicates that since the fluid 
is initially motionless the top-wall cooling effect will first propagate into the fluid layer 
through pure conduction. As shown in figure 4(a)  the top wall develops a thermal 
layer whose thickness 6, initially grows as 

6, x (at)$.  (23) 

This result follows from (4), which immediately after t = 0, expresses a balance 
between the thermal-inertia term and the y1 diffusion term. 

The momentum equation (7), written in the (q, yl; ul, v,)-system of the top wall, 
indicates that the unsteady inertia term is of order ul/t6,, while the viscous term is 
of order vu,/6;; the ratio of unsteady inertia to  viscous diffusion is therefore O(Pr-l). 
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Hence the correct force balance for Prandtl numbers of order one or greater is 
between buoyancy and viscous diffusion which, assuming that the thermal layer 6, 
is slender (6, < L) ,  yields the velocity scale 

Note that for the objectives of the present scaling analysis, we have assumed that 
sin8 x 8 x A and cos8 x 1.  

As time passes, the boundary-layer thickness 6, continues to grow until the heat 
transfer from the fluid layer to the wall is balanced by the energy convected into the 
top-wall region by the fluid sinking through the layer. At this point the energy 
equation (4) expresses a balance between convection and diffusion in the y1 direction, 

Using the boundary-layer thickness scale (23) and the velocity scale (24), we conclude 
that the growth of the boundary layer along the top wall ends at a time of order 

1 H2 t l f  x Ra$ -. 
Aa: 

where Ra,  is the Rayleigh number PrGr,. Therefore the final thickness of the 
boundary layer along the top wall is 

dlf x R a d  A-iH. (27 1 
It is worth stressing that the energy balance (25) between conduction and convection 
implies that the thermal-inertia term aT/at has become negligible, in other words, 
the top-wall boundary layer has reached steady state. At this stage the u1 velocity 
scale is 

l a :  ulf x R a g -  
H '  (28 1 

The final thickness (27) of the top-wall thermal boundary layer, can be compared 
with the vertical dimension of the cavity. The thermal boundary layer along the upper 
wall will be distinct when cYIf < H ,  i.e. when 

RaLAa > 1 .  (29 ) 

The criterion (29) can also be derived on the basis of a time comparison. The two 
characteristic times of int,erest are the time marking the end of layer growth ( t I f ,  (26)) 
and the diffusion time across the enclosure, H2/a .  A distinct boundary layer will exist 
only if i t  becomes convective before the heat can be transferred by conduction from 
the bottom to the top of the cavity, i.e. when 

Combining this condition with (26) leads once again to (29). 
Finally, it is worth keeping in mind that the length- and timescales discussed above 

follow from the assumption that, immediately before reaching its terminal thickness 
dlf, the boundary layer along the top wall is slender (alf < H ) .  This assumption was 
made in the discussion which preceded (24). Using (27), the slenderness condition 



Fluid dynamics of an  attic space 259 

slf < L translates into 

which is identical to  (29). 
Concurrently with the formation of a thermal boundary layer, the diffusion of 

vorticity into the attic space generates a viscous boundary layer. The thickness 6; 
of this viscous layer is a direct result of a balance between the viscous and inertia 
terms in the momentum equation, 

When the thermal layer has reached the steady state, the viscous layer has a thickness 

s; x (vt)k (32) 

of order 
(33) 

Hence the timescale (26) represents the steady state for a double boundary layer on 
the top wall; a thermal layer governed by a viscous-buoyancy balance against the 
wall, surrounded by an outer viscous layer governed by a viscous-inertia balance. 
Finally, the presence of a distinct viscous boundary layer along the top wall means 
Slf < H ,  in other words 

Pr-tRaL At > 1 .  (34) 

4.2. The discharge from the top-wall layers and the development of horizontal layers 
along the bottom wall 

Focusing once again on the beginning of time ( t  = 0+), the cold tilted wall drives 
downward a stream of thickness &(t )  and velocity u1 x (gPATA/Pr) t ,  (24). This stream 
is colder than the rest of the fluid in the enclosure, and, as a result, after reaching 
the x2 = 0 corner of the wedge, it has no choice but to move horizontally to the right 
along the bottom wall (figure 4a) .  Invoking the principle of mass convection, the 
volumetric flow rate of the horizontal stream, uzS2, is the same as u,S,, namely 

Some time before the steady state is reached, the flow in the vicinity of the bottom 
wall is described by a balance between friction and buoyancy forces 

vuz AT 
- x gp7. 
8; 

Combining this statement with (35) yields the short timescales for the velocity and 
the thickness of the horizontal intrusion layer 

uz x HiaW, (37) 

The end of the development of the bottom-wall layer is marked by a conduction 
convection balance in the energy equation (4) : 

The group of equations (37)-(39) defines the following time, velocity and thickness 
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scales for the bottom intrusion layer in the steady state : 
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a 
H 

u~~ x - Rak A-k, 

x H R ~ ~ A - % .  

Comparing the new timescale t2p with the time required by the top-wall layer to reach 
the steady state tIf, (26), we conclude that the bottom-wall layer will develop faster 
than the top-wall layer if 

t 2 f  
(43) - < 1  or R a & A $ > l .  

t ,f  

The criterion (43) is identical with (29), which is necessary for the existence of a 
thermal boundary layer along the top wall. Hence, when they exist, the two layers 
develop simultaneously and the top layer reaches steady state after the bottom 
layer, Comparing the final thickness if2, of the horizontal intrusion layer with the 
height of the enclosure H yields the necessary condition for the existence of a distinct, 
thermal layer along the bottom wall : 

(44) AiRaL > 1 .  

Note that this result is identical with (29). 
In the steady state, the bottom-wall thermal layer is surrounded by a viscous layer 

ruled by a balance between inertia and viscous diffusion in (7) : the thickness of this 

H layer is 
(45) &2f x RadPri xi, 

which is identical with the thickness scale for the viscous layer forming along the wall. 
Thus the criterion for the existence of a distinct viscous layer along the bottom wall 
is the same as the criterion (34) for the top wall. 

5. Numerical experiments 
The flow features discussed theoretically in 993 and 4 were verified on the basis 

of a complete series of numerical simulations. It was assumed that the fluid contained 
in the attic space is originally motionless and of a uniform temperature TH; as in the 
transient scale analysis of $4 the cavity is suddenly cooled from the top by decreasing 
the temperature of the sloping wall (the roof). Throughout this experiment, the 
temperature of the horizontal wall is maintained a t  the initial level TH. 

The numerical solution is aided somewhat by introducing the stream function, (lo), 
and the vorticity function defined as 

Taking H ,  v / H  and AT = TH-Tc as reference units for length, velocity and 
temperature variation, we define the new dimensionless variables 

y A  t = -  t u = u *  
H ’  H 2 / v  ’ v / H  ’ (47) 

(48) 
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The corresponding dimensionless forms of the governing equations and boundary 
conditions are 

(53) 

I u = v = O ,  $ = O ,  T=l ( y = O ) ,  

- 0 (x = A-l:  the centre of 
aT 

u = o  $ = O ,  w = o ,  -- ax 
symmetry of the attic), 

u = v = O ,  @ = O ,  T=O ( y = A x ) .  I 
The effect of the three dimensionless groups Gr,, Pr and A is determined by 
conducting a sequence of numerical experiments for different values of Gr,, Pr and 
A ,  and by comparing the resulting flow patterns and temperature fields. 

The numerical solution of (49)-(54) was accomplished based on a finite-difference 
method and the observation that, owing to the symmetry of the problem, only the 
left half of the flow needs to be calculated. The fluid region of interest was covered 
with m vertical and n horizontal grid lines; the grid fineness m = n = 41 was found 
to be adequate for the present solution. As shown in figure 4 ( b ) ,  rectangular meshes 
of size 1 x h were chosen such that h / l  = A ;  consequently, the uppermost grid point 
on each vertical grid line coincided with the top wall of the enclosure. 

Except for the nonlinear terms, all spatial derivatives in the governing differential 
equations (49)-(53) were approximated a t  the interior grid points using the central- 
difference formula (Roache 1976). The successive overrelaxation method (Roache 
1976) was employed to find from (51) the stream function for a known vorticity 
distribution. To solve both (52) and (53) we used a function subprogram (Chow 1979) 
able to handle an equation of the general form 

The details of this subprogram are omitted here, as they can be found in a 
textbook-level presentation in Chow (1979). 

The effect of fluid motion on the heat transfer between the two walls of the attic 
was evaluated by computing the Nusselt number 

where S is the length of the inert (isothermal) region a t  the left-hand corner of the 
wedge, as discussed at the end of $3 (figure 1). Equation (56) was integrated 
numerically for each instant in time. In order to be able to  discuss comparatively 
the evolution of Nu in time and the influence of Gr,, Pr and A on the heat-transfer 
rate, SIL was set equal to 0.1 throughout the present study. Note that for S/L values 
much smaller than 0.1 the Nusselt number calculated using (56) would be dominated 
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by the tip region. We felt that for a meaningful discussion of the convective 
heat-transfer effect, S/L should be large enough to remove from the picture the 
unrealistically large conduction effect through the tip. 

It is worth mentioning that in the development of the numerical solution we 
experimented also with non-uniform grids and advanced differencing methods. These 
alternative techniques did not improve the solution significantly, in view of the added 
complications. Most importantly, the use of alternative techniques did not widen the 
range of Grashof number amenable to a stable numerical solution by the h i t e -  
difference method. 

6. Results and discussion 
6.1. The effect of Grashof number 

The results of the numerical experiments are shown in figures 5-7. In the case of 
Gr, = lo5, which is the highest Grashof number investigated in the present study, 
we report the evolution and approach to steady state of the temperature, the 
horizontal velocity and the stream function evaluated at x = ?jL/H. The sudden 
cooling of the top wall initiates a counterclockwise circulation in the enclosure (see 
figures 5b, c ) .  The velocities are initially the highest near the roof of the attic, which 
is the surface driving the flow. At the same time, the body of fluid residing outside 
the top-wall layer moves slowly to the right in ‘uniform-flow’ fashion. As time 
progresses, the entire fluid is slowly entrained in the gyre; the steady state is reached 
a t  a dimensionless time t x 0.2. The manner in which the temperature field approaches 
the steady state indicates the presence of a sizable convective effect during the early 
part of the transient experiment (see figure 5a). In  the steady state, the temperature 
field departs noticeably from the pure-conduction limit ; however, conduction is still 
the major heat-transfer mechanism. We do not observe any steep temperature 
gradients near the walls which would indicate the presence of warm and cold fluid 
jets parallel to the bottom and top walls. In  other words, despite the relatively high 
value of Gr,, the convective heat-transfer mechanism does no appear to dominate 
the case documented in figure 5. This conclusion is in agreement with the scaling 
criterion (38), which, for this case (Ra, = 0.72 x lo5, A = 0.2), yieldsRafA4 x 7 ,  which 
is not appreciably higher than one. The steady-state flow pattern is ruled by the 
counterclockwise cell shown in figure 5 (d). 

An interesting aspect of these numerical results is that both the horizontal-velocity 
and stream-function profiles (figures 5 b ,  c )  do not approach the steady state mono- 
tonically, but in an oscillatory fashion. The steady state is reached after the oscillation 
is damped out by viscous diffusion. The oscillatory approach to steady state is a 
feature present in all numerical experiments considered in this study. 

The relative importance of convective heat transfer is illustrated by the Nusselt- 
number approach to steady state. Figure 6 shows Nu first rising to a peak value (at 
t = 0.086) and subsequently decaying to the steady-state value N u  = 3.64 for t > 0.2. 
The increase in the steady-state Nu-value confirms the increased importance of 
convection as a heat transfer mechanism. The peak in the N u ( t )  curve indicates the 
time of most intense heat transfer between the bottom wall and the attic fluid. This 
time corresponds to the first sweep made along the bottom wall (warm) by the jet 
cooled by the top wall. According to $4, the time of this first sweep scales as L/u,,,  
hence the dimensionless time t corresponding to  maximum Nu on figure 6 must scale 
as 

tNumax w A-lPr4Gr2. (57) 
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FIGURE 6. The Nusselt-number approach to steady state. 
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FIGURE 7. The dependence of Nu on GrH,  A and Pr, in the steady state ( t +  a). 

Thus the peak of the Nu(t) curve and the time of approach to the final Nu-value 
migrate to the left as GrH increases (figure 6).  

Numerical experiments conducted a t  lower Grashof numbers (Gr, = 10, lo3) 
revealed similar flow characteristics : thus, for the sake of brevity, these experiments 
are not shown. However, curve (a) on figure 6 shows the Nusselt-number variation 
us. time, and figure 7 shows the special effect of Gr, on the final heat-transfer rate 
between the top and bottom walls. Figure 7 shows that below Gr, = lo3 the Nusselt 
number is practically independent of Grashof number. 
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FIGURE 8. Steady-state streamline patterns: (a )  A = 0.4, Gr, = lo5, Pr = 0.72; ( b )  A = 1 ,  
Gr, = lo5, Pr = 0.72. 

6.2. The effect of aspect ratio, A = H / L  
We carried out two additional experiments (figure 8) to determine how seriously the 
aspect ratio A affects the flow pattern and temperature field in the enclosure. During 
these experiments the Prandtl number was kept unchanged, Pr = 0.72. Expecting 
that higher aspect ratios A would stimulate the circulation, we assigned to the 
Grashof number the highest value we were able to simulate stably (Gr, = lo5). In  
both experiments the temperature, horizontal-velocity and stream-function variations 
in the vertical exhibited similar behaviour to the A = 0.2 case reported in figures 
5 (a-c). The steady-state streamlines consist, once again, of one counterclockwise cell ; 
however, as expected, the circulation in figure 8 is stronger. According to figure 6, 
in the case A = 0.4 the Nusselt number reaches a peak value a t  t = 0.044, i.e. faster 
than in a shallower space ( A  = 0.2, Gr, = lo5) and in agreement with the criterion 
(57); subsequently Nu reaches a minimum value a t  t = 0.17 and finally approaches 
monotonically the steady state at t = 0.19. The relatively fast decay of the internal 
wave motion suggests the presence of effective viscous damping. The convective 
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contribution to heat transfer is enhanced by the increasing A ,  as indicated by the 
steady-state value of N u  (figures 5 and 6). 

Increasing the aspect ratio to A = 1.0 ‘speeds up’ the duration of the transient 
phase of the experiment. The internal wave motion and its decay take place earlier 
and, as shown in figure 5, steady state is reached at t E 0.125. 

Finally, figure 6 summarizes the effect of aspect ratio A on the net heat transfer. 
It is apparent that  the increasing values of A lead to increasingly higher Nusselt 
numbers: this effect is to be expected from the scaling analysis (criterion (29)), which 
showed that increasing the numerical value of the dimensionless group RaL At 
enhances the convective contribution to  heat transfer, and eventually results in a 
thermal layering structure in the enclosure. 

6.3. The effect of Prandtl number Pr 

An important dimensionless parameter whose effect remains to be examined is the 
Prandtl number. We conducted an additional experiment a t  Pr = 6 (water), in a 
cavity with an aspect ratio and a Grashof number considered earlier, A = 0.2, 
Gr, = lo5. Figure 6 shows that for Pr = 6 the Nusselt number approaches steady 
state monotonically, indicating a highly effective viscous damping of the internal 
wave motion. The steady-state value reached by N u  (figure 6) suggests a strong 
convective contribution to the net heat-transfer rate, Time-dependent velocity and 
temperature profiles were plotted for this experiment in the same fashion as in figure 
5 ;  however, these plots are not shown here owing t o  space limitations. The 
temperature profiles showed that the temperature change in the vertical direction 
takes place in the vicinity of the walls, demonstrating that increasing the Prandtl 
number leads to a temperature field composed of two thermal boundary layers 
sandwiching a nearly isothermal core region. The scaling criterion (29) predicts this 
behaviour, since in the case (GrH = lo5, Pr = 6, A = 0.2) the order of magnitude of 
RaL At is greater than unity. 

The flow field is found to  exhibit oscillatory behaviour and reaches steady state 
a t  t > 0.25. We did not observe the presence of viscous layers along the two walls, 
in agreement with the criterion (34) sine the group Pr-iRaLAg is of order unity. The 
steady-state streamline pattern revealed that as Pr increases, the streamlines make 
their ‘corner’ turn closer to the centre of the attic. The strong effect of Pr on N u  
is shown in figure 6, which lists the steady-state values of N u  for Pr = 0.72 and Pr = 6 
for the same A = 0.2 and Gr,  = lo5. This effect is explained by the scaling analysis 
of $ 4 :  in the convection-dominated regime, the Nusselt number defined by (56) scales 
as HISlf, in other words 

6.4. The effect of the temperature boundary conditions on the stability of the flow j ield 

If, in addition to being cooled from the top, the attic fluid is heated from below, i t  
may not reach the elongated single-cell steady state illustrated in figures 5 ( d )  and 
8. Instead, the attic fluid may experience a local thermal instability of the BBnard 
type (BBnard 1901 ; Rayleigh 1916; Chandrasekhar 1961). We conducted an additional 
experiment to investigate this possibility ; however, owing to space limitation we do 
not show the plotted temperature and flow-field history. I n  this experiment the 
T = 0.5 isothermal attic was simultaneously heated along the bottom wall (2’ = 1 )  
and cooled along the top wall (T = 0). The experiment focused on a cavity filled with 
air (Pr = 0.72) and subjected to conditions that are most favourable to  the BBnard 
instability, namely the highest possible Grashof number ( lo5) and a nearly horizontal 

Nu z A? PriGrL. (58) 
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roof A = 0 .2 .  The numerical results revealed the fact that the flow is stable 
throughout its evolution to  steady state. Furthermore, the steady-state temperature 
and flow fields were found to be nearly identical to those reported already in figures 
5(u-d) .  It is worth mentioning that the fluid motion is once again initiated in the 
vicinity of the top wall, because it is the only wall not perpendicular to the direction 
of gravity. 

6.5. Numerical verijkation of the asymptotic theory of section 3 

I n  order to  establish the range of validity of the analytical results developed in $ 3 ,  
we conducted a number of numerical calculations for the stream-function and 
temperature profiles in the vertical plane x* = 4L for GrH = 1000 and a range of aspect 
ratios A .  As shown in figures 9 ( a ,  b ) ,  the asymptotic theory predicts the flow and 
temperature fields adequately, provided that A < 0.01. For the lowest aspect ratio 
considered in these numerical tests ( A  = 0.01) the theoretical stream function 
predicts to within 0.03 % the numerical results. The theoretical temperature profile 
deviates only slightly from the numerical profile (figure 9 b )  : this discrepancy stems 
from the fact that  the theoretical curve represents one-dimensional conduction in the 
vertical direction, whereas the numerical solution accounts also for the minimal 
conduction effect in the horizontal direction. 

This research was supported in part by the National Science Foundation through 
Grant no. ENG 78-20957. 

Appendix 
Coegicients ci, i = 1 ,  . . . , 5 ,  in (16)  

Gr,Pr 3 f ’ * + r ,  1 
c2 = -~ 

GrH Pr  3f ‘* +g” 
800 f 2  

c* = ~ 

5040 f 4  ’ 
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Coefficients a*, i = 1 ,  . . . ,9 ,  in (1 7) : 

a, = 1 -(C- .*TH f l ’ f ” -2f ’3 
7920 360 f 5  

1 f’f” 

+ c;) 
f”f’-6ff’f’’+6f’3 

f 4  
G ~ H  fly”, 

a5 = -- 72000 

I 

1 
360 

‘7 = -- (3f ’f ” +f ” )  1 

B g  = - (gal f *  7a,f6 6a.3f5 + 5a4f4 + 4a5f3 + 3a6f2 + 2a7f) ,  

‘9 = - (a ,  f 9  +a, f’ +a3f6 + a 4 f 5  + a5 f 4  + a6 f 3  + a7 f 2 +  a8 f ) .  

In the above expressions the primes denote differentiation with respect to x. 

Coefficients ci, i = 1, .. ., 5, in (16) f o r f ( ~ )  = x: 

Gr,Pr 1 3Gr,Pr 1 Gr,Pr 1 
c3 = ___- 800 2’ 240 5’ 

c2 = - c1= ___- 1680 x4’ 

17Grffprx2+11). i ( 16800 3 2  
C 5  = - 

1 1  
c4 = -- 3x3’ 

Coefficients ai, i = 1 ,  . . . , 9 ,  in (1 7) for f(x) = x : 

a1 = --(-+-)-, Gr, 1 Pr 1 
a2 = %(0.0225+- 3Pr 5, 1 

7920 180 420 x5 3024 4oo)x 

I 1 1  
280 x4 ’ a5 = 0, 

a8 = - ( 9 ~ 1 ~ ’  + 7 ~ 2 ~ ~  + 6 ~ 3 ~ ~  + 5’4 x4 + 3a6x2) ,  

a, = Sa, x9 + 6a2 x7 + 5a3 x6 + 4a4 x5 + 2a6 x3. 
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